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1 Holder Spaces, Bounded Mean Oscillation, and Compact
Operators

1.1 Holder spaces

Let’s continue our discussion of Sobolev inequalities. We want to know: What does ||u||yy1,0
say about u when p > d? We proved a lemma:

Lemma 1.1. Suppose u € C°(R?) with d > 2. Then
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From this lemma, we saw the following theorem:
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Theorem 1.1. Let u € C°(R?%) with d > 2, and let x,y € Bg. Then
lu(@) — u(y)| < Clo — y[*[|DullLr(By)

whereozzl—%.

We want to rephrase this as an inequality for « € WP (U). To do this, we need a space

that has a regularity property relating to the theorem above.

Definition 1.1. Let u € C(I). The Holder seminorm of order « is

[U]CO‘(U = sup ‘U(.%') — u(y)‘
) THy ‘:B - y’a

By a seminorm, we mean that [']Ca(U) satisfies all the properties of a norm except the
property that [u]cey =0 == wu = 0. Instead, this implies that u is constant. Here is
how we make it into a norm



Definition 1.2. The Holder norm of order « is

[ullco(wy = [ulca@w) + llullzee-
The Holder space of order « is
CHU) ={u e CU) : [lul|ce < oo}
Theorem 1.2 (Morrey’s inequality!). Let d > 2, let p > d, and let U be a bounded domain
in R with C1 boundary OU. If u € WHP(U), then u € C*(U) with o = 1 — %. Moreover,
ullca@y < Cllullwie@-

Proof. By extension and density theorems, it suffices to consider v € C*°(R%) with suppu C
V, where V is a bounded, open set with V' O U (chosen independently of u). By the
previous theorem,

[ulca(vy < Cllullpa.

So all that remains is to bound ||u||fe in terms of ||u||y1,,. For this purpose, we will again
use the lemma to approximate u by its average. Let x € V. Then

1 1

|“(”“’)‘ B0 S, | = (B Sy O
1

< G 1) —ulo

|Du(2)|
By(z) |2 — x|471

< Cr®||Dull tp (B, (x))-

/ udz
By ()

S———
<JB, (@) vl dz<CllullLr (5, (0))
< C(lJullze + 1 Dul|zr)- O

<C dz

Take » = 1. Then

lu(z)| < C +C||Dul|»

1.2 Bounded mean oscillation

When p = d, W4 does not embed into L.

!This is sometimes called Morey’s embedding.



Example 1.1. For d =2, let U = B;(0), and consider

1
u = loglog (10 + > .
]

A useful substitute for the above failure involves the space of bounded mean oscillation
(BMO).

Definition 1.3. Let u € L] (U). The BMO seminorm is

loc
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[U]BMO sup
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Theorem 1.3. Let d > 2, U CRY, and u € WH4(R?). Then [u]ppo < 0o, and

[ulmo < C||Dul|a.

dz.
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Remark 1.1. As an exercise, you can show that L C BMO. The function v =
1, (o) log || shows that these spaces are nor equal.

Proof. Assume u € C*®(R?). We want to show that
[ulBmo < O Dul| 4.

Fix B,(z). We want to show that
1
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with some fixed constant C. We can rewrite the left hand side to get

dZ < CHDUHLd
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Since B, (x) C Ba,(y),

Using the lemma,

This is a convolution, so you might be tempted to use Young’s inequality: ||f * g|rr <
| fllzellgllLe, where 1 <p < g<r<ocand 141 = %+ %. However, this barely fails, since
% ¢ L1. Instead, we use the following theorem:
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Theorem 1.4 (Hardy-Littlewood). Let u € L}, and define

1
Mu(x) = sup/ U
( ) >0 ’BT(xﬂ By (x)
(Note that |Mu| < ||lu||L~). For 1 <p < oo,

[Mul[Lr < Cllul|ze.

Whenever you are faced with something that is hard to understand, it is a good idea
to decompose the region into pieces where the function is mostly constant. The power
function |y|® has the property that if 281 < |y|,|y/| < 2%, then |y|* ~ |y/|*. For our
problem, write Aj = {2871 < |z —y| < 2}, so
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<C > zw(ymmy).
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It now suffices to bound
d © 2PM(IDul)(y)|| < CrMIDull[ a1l o
2k<9¢r (Br(e))
>~ Ll

Using the theorem,
< Cr?|| Dul|fa. O

1.3 Compact operators and embeddings

We will discuss two more topics involving Sobolev spaces:

1. Compactness of Sobolev embedding

2. Poincaré-type inequalities (how to get information about u from || Du||r» given some
extra condition for normalizing the function).

Let’s set up the discussion for the first topic.

Definition 1.4. Let X,Y be normed spaces, and let T : X — Y be linear. We say that
T is a compact operator if T(Byx), the image of the unit ball in X, is compact in Y.
Equivalently, we may require that for all bounded {z,} C X, {Tz,} has a convergent
subsequence.



Definition 1.5. Suppose that we have an embedding (i.e. a bounded, linear, injective
map) ¢ : X — Y. We say the embedding X C Y is compact if ¢ is compact.

We are interested in writing something like this: W1P(U) C L4(U). If we think of
WLP(U) as a subspace of functions, then this embedding will be compact.

What is the basic compactness theorem in the setting of function spaces? We will use
the Arzela-Ascoli theorem:

Theorem 1.5 (Arzela-Ascoli). Let K be a compact set and A C C(K). Suppose that

1. A is locally bounded, i.c. for any x € K, there is an M(x) such that for all f € A,
|f(@)| < M(z).

2. A is equicontinuous, i.e. for all € > 0, there is a 0 > 0 such that for oll f € A,

[z -yl <6 = |f(x) - fly)l <e, Vaye kK.

Then A is compact.
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