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1 Hölder Spaces, Bounded Mean Oscillation, and Compact
Operators

1.1 Hölder spaces

Let’s continue our discussion of Sobolev inequalities. We want to know: What does ‖u‖W 1,p

say about u when p ≥ d? We proved a lemma:

Lemma 1.1. Suppose u ∈ C∞(Rd) with d ≥ 2. Then

1

|Br(x)|

∫
Br(x)

|u(x)− u(z)| dz ≤ C
∫
Br(x)

|Du(z)|
|z − x|d−1

dz

From this lemma, we saw the following theorem:

Theorem 1.1. Let u ∈ C∞(Rd) with d ≥ 2, and let x, y ∈ BR. Then

|u(x)− u(y)| ≤ C|x− y|α‖Du‖Lp(BR),

where α = 1− d
p .

We want to rephrase this as an inequality for u ∈W 1,p(U). To do this, we need a space
that has a regularity property relating to the theorem above.

Definition 1.1. Let u ∈ C(I). The Hölder seminorm of order α is

[u]Cα(U) = sup
x 6=y

|u(x)− u(y)|
|x− y|α

.

By a seminorm, we mean that [·]Cα(U) satisfies all the properties of a norm except the
property that [u]Cα(U) = 0 =⇒ u = 0. Instead, this implies that u is constant. Here is
how we make it into a norm
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Definition 1.2. The Hölder norm of order α is

‖u‖Cα(U) = [u]Cα(U) + ‖u‖L∞ .

The Hölder space of order α is

Cα(U) = {u ∈ C(U) : ‖u‖Cα <∞}.

Theorem 1.2 (Morrey’s inequality1). Let d ≥ 2, let p > d, and let U be a bounded domain
in Rd with C1 boundary ∂U . If u ∈W 1,p(U), then u ∈ Cα(U) with α = 1− d

p . Moreover,

‖u‖Cα(U) ≤ C‖u‖W 1,p(U).

Proof. By extension and density theorems, it suffices to consider u ∈ C∞(Rd) with suppu ⊆
V , where V is a bounded, open set with V ⊇ U (chosen independently of u). By the
previous theorem,

[u]Cα(V ) ≤ C‖u‖W 1,p .

So all that remains is to bound ‖u‖L∞ in terms of ‖u‖W 1,p . For this purpose, we will again
use the lemma to approximate u by its average. Let x ∈ V . Then∣∣∣∣∣u(x)− 1

|Br(x)|

∫
Br(x)

u dz

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

|Br(x)|

∫
Br(x)

u(x)− u(z) dz

∣∣∣∣∣
≤ 1

|Br(x)|

∫
Br(x)

|u(x)− u(z)| dz

≤ C
∫
Br(x)

|Du(z)|
|z − x|d−1

dz

≤ Crα‖Du‖Lp(Br(x)).

Take r = 1. Then

|u(x)| ≤ C

∣∣∣∣∣
∫
Br(x)

u dz

∣∣∣∣∣︸ ︷︷ ︸
≤
∫
B1(x)

|u| dz≤C‖u‖Lp(B1(0))

+C‖Du‖Lp

≤ C(‖u‖Lp + ‖Du‖Lp).

1.2 Bounded mean oscillation

When p = d, W 1,d does not embed into L∞.

1This is sometimes called Morey’s embedding.
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Example 1.1. For d = 2, let U = B1(0), and consider

u = log log

(
10 +

1

|x|

)
.

A useful substitute for the above failure involves the space of bounded mean oscillation
(BMO).

Definition 1.3. Let u ∈ L1
loc(U). The BMO seminorm is

[u]BMO = sup
Br(x0)⊆U

1

|Br(x0)|

∫
Br(x0)

∣∣∣∣∣u(z)− 1

|Br(x0)|

∫
Br(x0)

u

∣∣∣∣∣ dz.
Theorem 1.3. Let d ≥ 2, U ⊆ Rd, and u ∈W 1,d(Rd). Then [u]BMO <∞, and

[u]BMO ≤ C‖Du‖Ld .

Remark 1.1. As an exercise, you can show that L∞ ( BMO. The function u =
1B1(0) log |x| shows that these spaces are nor equal.

Proof. Assume u ∈ C∞(Rd). We want to show that

[u]BMO ≤ C‖Du‖Ld .

Fix Br(x). We want to show that

1

|Br(x)|

∫
Br(x)

∣∣∣∣∣u(z)− 1

|Br(x)|

∫
Br(x)

u(y) dy

∣∣∣∣∣ dz ≤ C‖Du‖Ld .
with some fixed constant C. We can rewrite the left hand side to get

1

|Br(x)|

∫
Br(x)

∣∣∣∣∣ 1

|Br(x)|
u(z) dy − 1

|Br(x)|

∫
Br(x)

u(y) dy

∣∣∣∣∣ dz
≤ 1

|Br(x)|2

∫
Br(x)

∫
Br(x)

|u(z)− u(y)| dy dz

Since Br(x) ⊆ B2r(y),

≤ 1

|Br(x)|2

∫
Br(x)

∫
B2r(y)

|u(z)− u(y)| dy dz

Using the lemma,

≤ 1

|Br(x)|2

∫
Br(x)

∫
B2r(y)

|Du(z)|
|z − y|d−1

dz︸ ︷︷ ︸
F (y)

dy

This is a convolution, so you might be tempted to use Young’s inequality: ‖f ∗ g‖Lr ≤
‖f‖Lp‖g‖Lq , where 1 ≤ p ≤ q ≤ r ≤ ∞ and 1 + 1

r = 1
p + 1

q . However, this barely fails, since
1

|z−x|d−1 /∈ Lq. Instead, we use the following theorem:
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Theorem 1.4 (Hardy-Littlewood). Let u ∈ L1
loc, and define

Mu(x) = sup
r>0

1

|Br(x)|

∫
Br(x)

|u|.

(Note that |Mu| ≤ ‖u‖L∞). For 1 < p ≤ ∞,

‖Mu‖Lp ≤ C‖u‖Lp .

Whenever you are faced with something that is hard to understand, it is a good idea
to decompose the region into pieces where the function is mostly constant. The power
function |y|α has the property that if 2k−1 ≤ |y|, |y′| ≤ 2k, then |y|α ' |y′|α. For our
problem, write Ak = {2k−1 ≤ |z − y| ≤ 2k}, so∫

B2r(y)

|Du(z)|
|z − y|d−1

dz ≤ C
∑

2k≤2r+c

∫
Ak

1

(2k)d−1
|Du(z)| dz

≤ C
∑

2k≤2cr

1

(2k)d−1

∫
B

2k
(y)
|Du(z)| dz

≤ C
∑

2k≤2cr

2kM(|Du|)(y).

It now suffices to bound∥∥∥∥∥∥
∑

2k≤2cr

2kM(|Du|)(y)

∥∥∥∥∥∥
L1

≤ Cr‖M|Du|‖Ld‖1‖
L

d
d−r (Br(x))

Using the theorem,

≤ Crd‖Du‖Ld .

1.3 Compact operators and embeddings

We will discuss two more topics involving Sobolev spaces:

1. Compactness of Sobolev embedding

2. Poincaré-type inequalities (how to get information about u from ‖Du‖Lp given some
extra condition for normalizing the function).

Let’s set up the discussion for the first topic.

Definition 1.4. Let X,Y be normed spaces, and let T : X → Y be linear. We say that
T is a compact operator if T (BX), the image of the unit ball in X, is compact in Y .
Equivalently, we may require that for all bounded {xn} ⊆ X, {Txn} has a convergent
subsequence.
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Definition 1.5. Suppose that we have an embedding (i.e. a bounded, linear, injective
map) ι : X → Y . We say the embedding X ⊆ Y is compact if ι is compact.

We are interested in writing something like this: W 1,p(U) ⊆ Lq(U). If we think of
W 1,p(U) as a subspace of functions, then this embedding will be compact.

What is the basic compactness theorem in the setting of function spaces? We will use
the Arzelà-Ascoli theorem:

Theorem 1.5 (Arzelà-Ascoli). Let K be a compact set and A ⊆ C(K). Suppose that

1. A is locally bounded, i.e. for any x ∈ K, there is an M(x) such that for all f ∈ A,
|f(x)| ≤M(x).

2. A is equicontinuous, i.e. for all ε > 0, there is a δ > 0 such that for all f ∈ A,

|x− y| < δ =⇒ |f(x)− f(y)| < ε, ∀x, y ∈ K.

Then A is compact.
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