Mathematics 222B Lecture 6 Notes

Daniel Raban

February 3, 2022

1 Hölder Spaces, Bounded Mean Oscillation, and Compact Operators

1.1 Hölder spaces

Let's continue our discussion of Sobolev inequalities. We want to know: What does $||u||_{W^{1,p}}$ say about u when $p \ge d$? We proved a lemma:

Lemma 1.1. Suppose $u \in C^{\infty}(\mathbb{R}^d)$ with $d \geq 2$. Then

$$\frac{1}{|B_r(x)|} \int_{B_r(x)} |u(x) - u(z)| \, dz \le C \int_{B_r(x)} \frac{|Du(z)|}{|z - x|^{d-1}} \, dz$$

From this lemma, we saw the following theorem:

Theorem 1.1. Let $u \in C^{\infty}(\mathbb{R}^d)$ with $d \ge 2$, and let $x, y \in B_R$. Then

$$|u(x) - u(y)| \le C|x - y|^{\alpha} ||Du||_{L^{p}(B_{R})},$$

where $\alpha = 1 - \frac{d}{p}$.

We want to rephrase this as an inequality for $u \in W^{1,p}(U)$. To do this, we need a space that has a regularity property relating to the theorem above.

Definition 1.1. Let $u \in C(I)$. The **Hölder seminorm** of order α is

$$[u]_{C^{\alpha}(U)} = \sup_{x \neq y} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}}$$

By a **seminorm**, we mean that $[\cdot]_{C^{\alpha}(U)}$ satisfies all the properties of a norm except the property that $[u]_{C^{\alpha}(U)} = 0 \implies u = 0$. Instead, this implies that u is constant. Here is how we make it into a norm

Definition 1.2. The Hölder norm of order α is

$$||u||_{C^{\alpha}(U)} = [u]_{C^{\alpha}(U)} + ||u||_{L^{\infty}}.$$

The **Hölder space** of order α is

$$C^{\alpha}(U) = \{ u \in C(U) : ||u||_{C^{\alpha}} < \infty \}.$$

Theorem 1.2 (Morrey's inequality¹). Let $d \ge 2$, let p > d, and let U be a bounded domain in \mathbb{R}^d with C^1 boundary ∂U . If $u \in W^{1,p}(U)$, then $u \in C^{\alpha}(U)$ with $\alpha = 1 - \frac{d}{p}$. Moreover,

$$||u||_{C^{\alpha}(U)} \le C ||u||_{W^{1,p}(U)}.$$

Proof. By extension and density theorems, it suffices to consider $u \in C^{\infty}(\mathbb{R}^d)$ with supp $u \subseteq V$, where V is a bounded, open set with $V \supseteq \overline{U}$ (chosen independently of u). By the previous theorem,

$$[u]_{C^{\alpha}(V)} \le C \|u\|_{W^{1,p}}.$$

So all that remains is to bound $||u||_{L^{\infty}}$ in terms of $||u||_{W^{1,p}}$. For this purpose, we will again use the lemma to approximate u by its average. Let $x \in V$. Then

$$\begin{aligned} \left| u(x) - \frac{1}{|B_r(x)|} \int_{B_r(x)} u \, dz \right| &\leq \left| \frac{1}{|B_r(x)|} \int_{B_r(x)} u(x) - u(z) \, dz \right| \\ &\leq \frac{1}{|B_r(x)|} \int_{B_r(x)} |u(x) - u(z)| \, dz \\ &\leq C \int_{B_r(x)} \frac{|Du(z)|}{|z - x|^{d-1}} \, dz \\ &\leq C r^{\alpha} \|Du\|_{L^p(B_r(x))}. \end{aligned}$$

Take r = 1. Then

$$|u(x)| \le C \underbrace{\left| \int_{B_{r}(x)} u \, dz \right|}_{\le \int_{B_{1}(x)} |u| \, dz \le C ||u||_{L^{p}(B_{1}(0))}} + C ||Du||_{L^{p}}$$
$$\le C(||u||_{L^{p}} + ||Du||_{L^{p}}).$$

1.2 Bounded mean oscillation

When p = d, $W^{1,d}$ does not embed into L^{∞} .

¹This is sometimes called Morey's embedding.

Example 1.1. For d = 2, let $U = B_1(0)$, and consider

$$u = \log \log \left(10 + \frac{1}{|x|} \right).$$

A useful substitute for the above failure involves the space of bounded mean oscillation (BMO).

Definition 1.3. Let $u \in L^1_{loc}(U)$. The **BMO seminorm** is

$$[u]_{BMO} = \sup_{B_r(x_0) \subseteq U} \frac{1}{|B_r(x_0)|} \int_{B_r(x_0)} \left| u(z) - \frac{1}{|B_r(x_0)|} \int_{B_r(x_0)} u \right| dz$$

Theorem 1.3. Let $d \geq 2$, $U \subseteq \mathbb{R}^d$, and $u \in W^{1,d}(\mathbb{R}^d)$. Then $[u]_{BMO} < \infty$, and

$$[u]_{\rm BMO} \le C \|Du\|_{L^d}.$$

Remark 1.1. As an exercise, you can show that $L^{\infty} \subseteq$ BMO. The function $u = \mathbb{1}_{B_1(0)} \log |x|$ shows that these spaces are nor equal.

Proof. Assume $u \in C^{\infty}(\mathbb{R}^d)$. We want to show that

$$[u]_{\rm BMO} \le C \|Du\|_{L^d}$$

Fix $B_r(x)$. We want to show that

$$\frac{1}{|B_r(x)|} \int_{B_r(x)} \left| u(z) - \frac{1}{|B_r(x)|} \int_{B_r(x)} u(y) \, dy \right| \, dz \le C \|Du\|_{L^d}$$

with some fixed constant C. We can rewrite the left hand side to get

$$\begin{aligned} \frac{1}{|B_r(x)|} \int_{B_r(x)} \left| \frac{1}{|B_r(x)|} u(z) \, dy - \frac{1}{|B_r(x)|} \int_{B_r(x)} u(y) \, dy \right| \, dz \\ & \leq \frac{1}{|B_r(x)|^2} \int_{B_r(x)} \int_{B_r(x)} |u(z) - u(y)| \, dy \, dz \end{aligned}$$

Since $B_r(x) \subseteq B_{2r}(y)$,

$$\leq \frac{1}{|B_r(x)|^2} \int_{B_r(x)} \int_{B_{2r}(y)} |u(z) - u(y)| \, dy \, dz$$

Using the lemma,

$$\leq \frac{1}{|B_r(x)|^2} \int_{B_r(x)} \underbrace{\int_{B_{2r}(y)} \frac{|Du(z)|}{|z-y|^{d-1}} \, dz}_{F(y)} \, dy$$

This is a convolution, so you might be tempted to use Young's inequality: $||f * g||_{L^r} \leq ||f||_{L^p} ||g||_{L^q}$, where $1 \leq p \leq q \leq r \leq \infty$ and $1 + \frac{1}{r} = \frac{1}{p} + \frac{1}{q}$. However, this barely fails, since $\frac{1}{|z-x|^{d-1}} \notin L^q$. Instead, we use the following theorem:

Theorem 1.4 (Hardy-Littlewood). Let $u \in L^1_{loc}$, and define

$$\mathcal{M}u(x) = \sup_{r>0} \frac{1}{|B_r(x)|} \int_{B_r(x)} |u|.$$

(Note that $|\mathcal{M}u| \leq ||u||_{L^{\infty}}$). For 1 ,

 $\|\mathcal{M}u\|_{L^p} \le C \|u\|_{L^p}.$

Whenever you are faced with something that is hard to understand, it is a good idea to decompose the region into pieces where the function is mostly constant. The power function $|y|^{\alpha}$ has the property that if $2^{k-1} \leq |y|, |y'| \leq 2^k$, then $|y|^{\alpha} \simeq |y'|^{\alpha}$. For our problem, write $A_k = \{2^{k-1} \leq |z-y| \leq 2^k\}$, so

$$\int_{B_{2r}(y)} \frac{|Du(z)|}{|z-y|^{d-1}} dz \leq C \sum_{2^k \leq 2r+c} \int_{A_k} \frac{1}{(2^k)^{d-1}} |Du(z)| dz$$
$$\leq C \sum_{2^k \leq 2cr} \frac{1}{(2^k)^{d-1}} \int_{B_{2^k}(y)} |Du(z)| dz$$
$$\leq C \sum_{2^k \leq 2cr} 2^k \mathcal{M}(|Du|)(y).$$

It now suffices to bound

$$\left\| \sum_{2^k \le 2cr} 2^k \mathcal{M}(|Du|)(y) \right\|_{L^1} \le Cr \|\mathcal{M}|Du|\|_{L^d} \|1\|_{L^{\frac{d}{d-r}}(B_r(x))}$$

Using the theorem,

$$\leq Cr^d \|Du\|_{L^d}.$$

1.3 Compact operators and embeddings

We will discuss two more topics involving Sobolev spaces:

- 1. Compactness of Sobolev embedding
- 2. Poincaré-type inequalities (how to get information about u from $||Du||_{L^p}$ given some extra condition for normalizing the function).

Let's set up the discussion for the first topic.

Definition 1.4. Let X, Y be normed spaces, and let $T : X \to Y$ be linear. We say that T is a **compact operator** if $T(B_X)$, the image of the unit ball in X, is compact in Y. Equivalently, we may require that for all bounded $\{x_n\} \subseteq X, \{Tx_n\}$ has a convergent subsequence.

Definition 1.5. Suppose that we have an embedding (i.e. a bounded, linear, injective map) $\iota: X \to Y$. We say the embedding $X \subseteq Y$ is **compact** if ι is compact.

We are interested in writing something like this: $W^{1,p}(U) \subseteq L^q(U)$. If we think of $W^{1,p}(U)$ as a subspace of functions, then this embedding will be compact.

What is the basic compactness theorem in the setting of function spaces? We will use the Arzelà-Ascoli theorem:

Theorem 1.5 (Arzelà-Ascoli). Let K be a compact set and $\mathcal{A} \subseteq C(K)$. Suppose that

- 1. A is **locally bounded**, i.e. for any $x \in K$, there is an M(x) such that for all $f \in A$, $|f(x)| \leq M(x)$.
- 2. A is equicontinuous, i.e. for all $\varepsilon > 0$, there is a $\delta > 0$ such that for all $f \in A$,

$$|x-y| < \delta \implies |f(x) - f(y)| < \varepsilon, \qquad \forall x, y \in K.$$

Then \mathcal{A} is compact.